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Abstract 

We will develop a complete cohomology theory, which vanishes on injectives and give neces- 
sary and sufficient conditions for it to be equivalent to the generalized Tate cohomology theory 
developed by Mislin, Benson and Carlson and Vogel. @ 1998 Elsevier Science B.V. All rights 
reserved. 
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1. Introduction 

Recently Vogel [9] and Mislin [ 131 independently developed a generalization of 

Tate-Farrell cohomology applicable to any group G; in fact, one can define com- 

plete cohomological functors for any ring R. Mislin’s work was strongly influenced 

by Gedrich and Gruenberg’s theory of terminal completions [8]. In [l] Benson and 
Carlson give definitions for Tate cohomology for finite groups, but it turned out that 

they work more generally for any ring R and the resulting theory is isomorphic to that 
of Vogel and Mislin. A good overview of this complete cohomology theory can be 
found in [l 11. 

For R-modules A4 and N these complete cohomology groups are denoted by 

l%&W,N) and they are defined and can be non-zero for all integers j. They also 

satisfy the following two properties, where the first one is not surprising as we are 

considering cohomological functors. 
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(1) For every short exact sequence of R-modules there are long exact sequences of 

complete cohomology with natural connecting homomorphisms in both variables. 

(2) Complete cohomology vanishes on projectives in both variables and all dimen- 

sions. 

This provided the motivation to search for an alternative approach using injectives. 

It turned out that there is indeed such an injective complete (I-complete) functor 

I$-, -) satisfying analogous properties. In Sections 2-4 we introduce three ap- 

proaches to I-complete cohomology, one axiomatic via satellites analogous to Mislin’s 

[13] and the more intuitive approaches analogous to Benson and Carlson’s [l] and 

Vogel’s [9]. We shall show that they lead to equivalent functors. 

Contrary to ordinary cohomology, where the constructions via projectives and in- 

jectives are equivalent, I-completion of Exts(-, -) yields a functor not necessarily 

equivalent to the P-completion. This is connected to Gedrich and Gruenberg’s invari- 

ants of a ring silp R, the supremum of the injective lengths of the projectives, and 

spZiR, the supremum of the projective lengths of the injectives [8]. 

Section 5 will be devoted to proving the following Comparison Theorem. 

Theorem 5.2. Let R be a ring. Then, for all R-modules M-and N, the P-complete 
cohomology Exti(M, N) and the I-complete cohomology Ext,*(M, N) are naturally 
equivalent if and only if both silp R and spli R are jinite. 

Section 6 will be dedicated to examples. In Section 7 we shall give a brief summary 

of facts about complete injective resolutions. 

2. The approach via satellites 

We begin by introducing the necessary notation and give an introduction to basic 

but important facts about satellites. The main reference for this is [4, Chap. 31. 

Let R be an arbitrary ring and M an R-module. Denote by IA4 the injective envelope 

of A4 and by CM the cokemel of the inclusion A4 H ZM. We then define inductively, 

for all IZ > 1, C”M = ,Y(Y-‘M) with the convention that C”M =M. Let T be a con- 

travariant additive functor from A!odR, the category of R-modules, to &b, the category 

of abelian groups. We define the left satellite as follows: 

Se1 T(M) = ker(T(EM) -+ T(ZM)). 

The higher satellites are defined inductively by S+T(M) = ,!-l(S-n+‘T(M)) for all 

n > 0, where we put SOT(M) = T(M). 

Definition 2.1. A family (T”ln E Z) of additive functors from A’odR to &b is called 

a contravariant cohomological functor if for each short exact sequence A’ HA ++A” of 
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R-modules, there is a long exact sequence 

. . . &y/p) + T”(A) + T”(A’)LT”+‘(A”) --+ . . . 

with natural connecting homomorphisms 6. 

The most well-known example is given by the ordinary Ext-groups Extg(-,N) with 

the convention that Exti( -,N) = 0 for all 12 < 0. 

Satellites satisfy the following fact, which implies that they are very close to being 

a contravariant cohomological fimctor. 

Lemma 2.2 (Cartan and Eilenberg [4, (111.3.1)]). Every short exact sequence of R- 
modules, A’ H A + A” gives rise to a natural connecting homomorphism SFT(A’) + 
S-“+‘T(A”), n >O, in such a way that the long sequence 

. . . + S-“T(A”) -+ S-“T(A) 4 S-“T(A’) -i S-‘+‘T(A”) 4 . . . -+ T(A’) 

is exact. 

Obviously, for J an injective R-module, we have that J = IJ, and therefore 

S-’ T(J) = 0. Hence, for all R-modules A and all integers n > k > 0, we obtain a natural 

isomorphism: 

S-“T(A) = S-“+kT(CkA). 

Note that we call a sequence of contravariant additive functors connected if it satisfies 

part of Definition 2.1, only requiring that the composite of two consecutive maps in the 

long sequence is zero. We can now characterize the long exact sequence of satellites 

in the following way. 

Proposition 2.3 (Cartan and Eilenberg [4, (111.5.2’)]). Let T<’ and Us0 denote con- 
nected sequences of contravariant functors and C/JO : To -+ U” a natural transformation. 
If UL” is a cohomological functor and satisfies U-“(I) = 0 for all n > 0 and all in- 
jective R-modules I then the following holds: 

(1) 4’ extends uniquely to ~$2’ : Tl” -+ Us0 and ~$5~ factors uniquely through the 
canonical morphism T<’ + S<‘T’. 

(2) If To is half exact and 4° is an equivalence then the induced morphism 
Sl”To + Us0 is an equivalence. 

There now follow the definition and universal property of the I-completion of a 

contravariant cohomological functor. This is an analogue to Mislin’s definition of the 

P-completion of a covariant cohomological Ikctor [ 13, (2.1)]. 

Definition 2.4. Let (T*) be a contravariant cohomological functor. Then its I-comple- 

tion consists of a contravariant cohomological functor (?*) together with morphisms 

(r* ) : (T* ) + (T* ) satisfying the following conditions: 

(1) p(1) = 0 for all injective R-modules I and every n E Z. 
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(2) Every morphism (T*) -+ (U*), where (U*) is a contravariant cohomological 

functor vanishing on injectives, factors uniquely through (r*). 

Any contravariant cohomological fimctor satisfying property (1) above will be called 

I-complete. 

Theorem 2.5. Every contravariant cohomological finctor T* = (T”ln E h) admits a 
unique I-completion: 

z*:T*_,F* 

p(A) = lim S-kT”+k(A) 

k/O 

for all R-modules A and all integers n. 

Proof. The proof is exactly the same as in 

give a brief outline of the construction here. 

For every n E Z we obtain a contravariant 

the projective case [13, (2.2)]. We will 

cohomological hmctor by defining 

The identity morphism T” -+ T” induces a unique morphism z; : T’ + T*(n), where 

~;i’ = idTj for all j > n. In the same fashion, we extend, for all m > n, the identity on 

Tm to a unique morphism r&,, : T*(n) -+ T*(m). Thus, we can now define 

?* = 12{T*(n) 1 I:,,}, 

which is an I-complete contravariant cohomological functor. We also obtain a natural 

morphism 

l* = lim r,* : T* --+ T*, 
---i 

which satisfies the universal property of Definition 2.4. 0 

The following two lemmas are analogues to Mislin’s Lemmas 2.4 and 2.5 [ 131 and 

are proved using similar arguments. They can be useful tools for computations. 

Lemma 2.6. Let T* be a contravariant cohomological functor and no E Z such that 
T*(I)=0 for all n >no and all injective R-modules I. Then t” : T”(M)+ T”(M) is 
an isomorphism for all n > no and all R-modules M. In addition, TX is naturally 
equivalent to T’(n). 

Lemma 2.1. Let Cp* : T* + V” be a morphism of contravariant cohomological func- 
tors with V* I-complete. Suppose @’ : T” + V” is an equivalence for all n 2 no. Then 
the induced morphism T* -+ V* is an equivalence. 
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3. The intuitive approach 

The advantage of this approach is that the construction is more intuitive and some 

applications become much more easily visible. 

Let 12 > 0 be an integer and define Z, HomR(M,N) to be the set of all 

homomorphisms cp E HomR(M,N) factoring through a module of injective 

5 n. We denote the quotient as follows: 

(M, N)n = HomR(M,N),% HomR(A4,N). 

R-module 

dimension 

We now define categories Z,, &!odR having as objects the R-modules, and morphisms 

from M to N lying in (A&N),. 

Lemma 3.1. Z defines a functor from I,, AodR to itselJ: 

Proof. To begin, we have to show how to obtain a map Cf : CA + CB, for a given 

R-module homomorphism f : A -+ B. To do so, consider the following diagram: 

5 0 

O-B-IB-ZB-0 

As IB is injective we have a well defined map 1f : IA +IB such that 1f o I = z o f. 

Thus we have a well defined homomorphism Zf E Hom(CA, CB) making the diagram 

commute. Even though it is not uniquely determined in Hom(CA, ZB) it is unique in 

(CA, CB),: 

Let ii E CA. We then define Zf(ii)= CJ o If(a) where a E IA is chosen such that 

z(a) =ii. Suppose that if extends f as well. Then it suflices to show that (C - c)f 

factors through IB. To do this, define @ : CA +ZB by @(ii) = (If -if )(a) where xa = 2. 

This is well defined, which can be verified by a routine check. And by its definition we 

have that a@ = Cf - if which shows that Cf is uniquely determined in (CM, CN),. 

Verification that C is indeed a functor again is a routine check. 0 

Thus we have shown that, for all integers n 2 0, there is a well defined sequence of 

maps 

(M,N),i(CM,CN),--t(C2~,C2N),~ ... 

and it is now possible to define an analogue to the Benson-Carlson groups: 

Definition 3.2. 

B?j(M,N) = lim(C’M, C’N)o. 
+ 
i?O 

In fact, this definition is independent of the choice of the categories above. 
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Lemma 3.3. For all R-modules M and N and all integers n 2 0, 

ej(M, N) = lim(C’M, C’N),. 
- 
i>O 

Proof. We obviously have, for all R-modules M and N and all integers n 2 0, the 

following natural surjection: 

(MN)0 -++ (M,N),. 

The direct limit is an exact functor, hence we have a natural surjection 

@: lim(C’M, Z’N)c ++ lim(Z’M, Z’N), b’n E 2720. 
4 + 
i>O i20 

So we only need to show that @ is injective. Take x E (CkM,CkN)o, some k E 2, 

which maps to zero under @, which means it factors through a module L of finite 

injective dimension <n. Since Z is functorial we know that 27x: PikM + CnikN 

factors through C”L, an injective. Hence x represents zero in the direct limit. 0 

Remark. We can make an analogous statement for P-complete cohomology. Denote 

by [M,N], the R-module homomorphisms from M to N which are unique up to 

homomorphisms factoring through a module of finite projective dimension 5 n. Let 

QM = ker(FM -+M), where FM denotes the free R-module on the underlying set of M. 

Then, for all n 2 0, it follows that 

l@(M,N) = lim [Q’M, Q’N],. 
+ 
i>O 

For convenience we shall, from now on denote (M,N)o by (M,N). Let us further 

denote, for R-modules M and N, by [4] the image of $ E HomR(M, N) in (M,N). 

Proposition 3.4. Every short exact sequence A’ ++A ++A” of R-modules induces a 

long exact sequence 

. . . + (CA, N) + (CA’, N)A(A”, N) + (A, N) 4 (A’,N) 

with natural connecting homomorphism 6. 

Proof. From the proof of Lemma 3.1 we can conclude that for an R-module B, every 

[+] E (A’,B) induces a unique [$] E (A”, ZB). Here we take [4] = [id] E (A’,A’). Thus, 

[+] E (A”, CA’), which now gives us, for every [a] E (CA’, N), a unique [p] = [@][$I = 

6[a] E (A”, N). 

Since (-,N) is half exact, which can be verified with a routine check, we have 

established exactness at (A, N). 

Applying the injective Horseshoe Lemma [4, (1.3.5)] we obtain an exact sequence 

(CA”,N) -+ (C, N) + (CA’, N), where C = coker(A HIA’ @ ZA”). Since, by the injec- 
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tive Schanuel’s Lemma [14, Ex. 3.361 (C,N) 2 (CA,N), we have established exactness 

at (CA,N). 

Applying the injective Schanuel’s Lemma to 

A’ H A ++ A” 

II I 1 

A’ F+ IA’ -B ,TA’ 

we obtain a short exact sequence 

A H A” @ IA’ + CA’. 

Exactness at (A”, N) follows as (A” cT3 IA’, N) !? (A”, N). 

To prove exactness at (CA’,N) we use a similar argument. We apply the injective 

Schanuel’s Lemma to the following: 

A H A” @IA’ + CA’ 

1 

++ CA 

II 1 

AH IA 

and obtain a short exact sequence A” CB IA’ HIA CB CA’ + iEA. 0 

Now we shall iterate the process of Proposition 3.4 to obtain a long exact sequence 

for all FEZ’ and all jE N: 

. . . ~(Ci+LA,~~~),(~i+1A’,C~~)--t(CiA”,C~~)~(CiA,~j~)~ . . . . 

This suggests a generalization of Definition 3.2 to all dimensions. 

Definition 3.5. Let R be a ring and M and N be R-modules. For every n E Z we define 

ei(M, N) = ei(M, FN) = lim (C’M, C’+“N). 
- 
i2lnl 

Even if C”N is not defined for n < 0, the definition makes sense, as in the direct 

limit we only leave out a finite number of initial terms. 

If we now take direct limits of the above long exact sequences it turns out that 

lim(Z’+“A, Cj+“N) = %?;‘+‘(A, N). 
+ 
IQ0 

For A’ and A we take the same limit. Thus we have shown that the functor defined 

in Definition 3.5 is a cohomological ftmctor, contravariant in the first and covariant 

in the second variable, which vanishes on injectives. It now remains to show that, as 

a functor in the first variable it actually is the I-completion of Exti(-, N). 
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Theorem 3.4. Let R be a ring and N an R-module. Then, for every integer n, 

&; (-, N) and B?,“(-,N) are naturally equivalent. 

Proof. Consider the following injective resolution of N: 

O+N+IN+12N+ ..., 

where im(IjN + I j+‘N) = CjN, for all j 2 1. By dimension shifting in the second vari- 

able of the long exact sequence of Exti(M, -) we obtain a natural isomorphism 

Ext;;(M,N) ” Ext’(MJ”-‘N). 

This implies that there is a natural surjection 

4” : Ext;;(M, N) ++ (zkM, Ck+“N). 

Passing onto limits we therefore obtain a natural surjection: 

O”(M, N) : lim Ext”+k(CkM, N) -++ lim (_XkM, Ck+“N). 

k; k; 

The connecting maps on the left hand side come from the short exact sequence 

CkM~Ik+lM* Ck+‘M, for all k> In/, and from the corresponding connecting homo- 

morphisms 6 in the long exact sequence of Ext*(-,N). Hence we have the following 

equality: 

im 6 = ker(Ext n+k+l(zk+lM,,q 
-+ Extn+k+l (Zk+‘M, N)) 

= S-‘Ext”+k+l(CkM, N) 

= S-kExt”+k+l(X&& N), 

where the last equality follows from the long exact sequence of Satellites (2.2). There- 

fore, by the definition of the direct limit we get 

lim ExFfk(CkM,N) F+ lim FkExtnfk+‘(CM,N) 

k2lni kz 

=E%“+‘(W,N) 

” E%“(M, N). 

It now remains to check that @“(A&N) is actually injective. 

Let f E E%“(M, N) be in the kernel of @“(A&N). Therefore it can be represented 

by an element X E Ext”+k(CkM, N), f or some k + n > 0, whose image in (zkM, Ck+“N) 

is zero. Hence 05 factors through an injective. Using the injective resolution of N 

as above, we can represent X by a cocycle x : CkA4 + Fk+‘N which factors through 

FfkN. Thus we have obtained y : CkM+Cn+kN in the image of X in (Z’M, Ck+“N), 
which factors through an injective. 
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From the injective resolution of M, we have the embedding 1: ZkA4 H Ikf’M. Hence 

we can say that y factors through Ik+‘M. We now define a map Y : ,Yk+‘M+Pk+‘N 

as follows. For every s E C k+lM we choose an i EZ”+‘M such that x(i) =s. We then 

Put 

‘y : Ck+‘M -+InikN 

s ++ ((1~) - 4)(i). 

Consider the following commutative diagram: 

n+k+l 
N 

Y is a well defined map such that oY =Zy. Now z represents 62 in 

Ext”+kfl(ZkflM,N). Additionally, z = z’crY =d!P is a coboundary. Thus, in the di- 

rect limit we have that x’= 0, as required. 0 

Even though we already know, in particular from the previous theorem, that 

E; (M,N) is an I-complete functor, we are able to state the following much stronger 

and useful fact, which is an analogue to Theorem 4.2 of Kropholler [lo]. 

Since B?i(M,N) and l$&(M, N) are naturally equivalent, we will not distinguish 

between the two notations. From now on we will use the more natural looking 

&;(M, N). 

Theorem 3.7. Let M and N be R-modules. 
(1) If M or N has jinite injective dimension then ETt; (M,N) = 0, for all n E Z. 

(2) Ey$(M,M) = 0 if and only if M has finite injective dimension. 

Proof. To prove this theorem we will use the approach to I-complete cohomology 

we have established in this section. Assertion (1) and the “if’‘-direction of (2) follow 

directly from Definition 3.5 and Lemma 3.3. Now suppose 

E%j(M, M) = lim( C’M, C’M) = 0. 
4 
i>O 

Then there must be an integer k > 0 such that the identity map on M becomes zero in 

(CkM, CkM), as otherwise idM would survive as a non-zero element in the direct limit. 

Therefore idzkM factors through an injective, which means that CkM itself is injective. 
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Thus M has an injective resolution of finite length k. Hence it is of finite injective 

dimension. 0 

4. The hypercohomology approach 

This is another approach which will make it apparent that I-complete cohomology 

gives us a cohomological fnnctor in both variables. Additionally it gives us a long 

exact sequence of cohomological functors involving Extl;(-, -) and Evxt,*(-, -) anal- 

ogously to [ 11, Section 4.41. We will proceed using the same method laid down by 

Vogel [9]. 

Let M HI and NH J be injective resolutions of the R-modules M and N respec- 

tively. Denote by Hom(M,N) the bicomplex with 

Hom”(M,N) = n Hom(Z-P,J4), n E Z. 

p+q=n 

The boundary map D, : Hom’(M,N)-+Hom”+‘(M,N) is defined as follows. Let 

cp E Hom(Z-J’,.Zq). Then D(q) = Sfq + (-1 )“cpS; where 61 and aJ are the boundary 

maps in I and J, respectively. 

We denote by HOmt,(M,N) the subcomplex of bounded homomorphisms, which 

actually is the total complex. An element f E Hom”(M,N) is bounded if there exists 

a pa E 2! such that fp : Z-P + Jq is zero for all 1 pi >po. Hence 

Hom,“(M, N) = n Homb(Z-P, Jq) = @ Hom(Z-P, Jq). 

p+q=n p+q=n 

Finally denote by %6 (M,N) the quotient complex 

&&M, N) = &&‘(M, N)/Homi(M, N). 

Passing on to cohomology we define a new functor analogously to Vogel [9]: 

Definition 4.1. V,“(kf,N)=H’@&(M,N)) for all n E Z. 

It can be verified by a routine check analogous to ordinary cohomology that yRn(A4, N) 

is independent of the choice of injective resolutions of M and N. 

Proposition 4.2. &“(M,N) is a cohomological functor, contravariant in the jirst, 
covariant in the second variable. 

To prove this proposition we need the following lemma. 
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Lemma 4.3. Let X be a complex and Y’ H Y -W Y” a short exact sequence of com- 

plexes. If Y’ is injective there is a commutative diagram of complexes 

0 - Homb(Y”, X) A Hom,,(Y, X) A Hom,,(Y’, X) - 0 

0 - Hom(Y”, X) - Hom(Y,X) - Hom(Y’,X) - 0 

I 
0 - ii&(Y",X) - 

I 
G&Y,X) A 

I 
ii&(Y',X) - 0 

with exact rows. 

Proof. Since Y’ is injective there is, for all p, q E Z, a short exact sequence of abelian 

groups 

Thus, taking direct products gives us exactness of the middle row. Exactness of the 

top row is a well-known fact, see e.g. [2, Section 5, Proposition 2b]. Hence the bottom 

row is exact as well. 0 

We now return to the proof of Proposition 4.2. For each short exact sequence of 

R-modules M’ +-+A4 +M” we obtain a short exact sequence I’ H I --w I” of injective 

resolutions, e.g. [4, (I, 3.5)]. Hence, by the above lemma, there is a short exact sequence 

O+&&M”,N)+i%&M,N)+%k(M’,N)+O 

of complexes, which, after passing to cohomology, gives us a long exact sequence 

. . . + V”(M”,N)+ V”(M,N)--, V”(M’,N) A Vn+Q4”,N)+ . . . 

with natural connecting homomorphism 6, cf. [14, (6.2), (6.3)]. 
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Covariance in the second variable can be derived in the same way as above, from 

a covariant analogue to Lemma 4.3. 0 

A family of maps cp = {(pQ 1 q E Z} is called an almost cochain map of degree n if 

the following diagram: 

%I I I %+I 

Jq+n 6+ J4 +n+1 

commutes for all but a finite number of q E h. Two almost cochain maps cp, [ : I-+ J of 

degree n are almost chain homotopy equivalent if there exists a family $ = {$i 1 i E 22) 
of R-module homomorphisms i/+ : I’+’ --+ Jifn such that S$i-t +&S = ~pi - ti for all but 

a finite number of i E Z. 
By a standart argument, analogously to e.g. [12, Section 2.31, we can verify that 

V”(M,N) is the abelian group of almost cochain homotopy equivalence classes of 

almost cochain maps. 

-* 
Theorem 4.4. V,“(-, -) FZ EXfR(-, -). 

Proof. To prove this theorem we will use the approach to I-complete cohomology 

laid down in Section 3. By the above argument it suffices to show that for arbitrary 

R-modules M and N there is an isomorphism from the group of almost cochain ho- 

motopy equivalence classes of almost cochain maps to l%i(M,N). 

Let [q] be a cochain homotopy equivalence class of degree n. Hence, for all q>qo, 
some “big enough” qo, all the above diagrams commute. Consider the following dia- 

gram: 

6 
PM A Iq+‘M 

6 
PM H _, . . . 

Cq+"N H Iq+“N 
6 6 

-, Zq+“+‘N _, . . . 

Hence (pq induces a unique eq E Hom( FM, Z q+“N). Suppose, cp and 4; are almost chain 

homotopy equivalent, i.e. for all q > 41, some 41, there are chain homotopies as above. 

Thus, Fq - tq factors through an injective, and hence (pq induces a unique element in 

(FM, F+“N). Therefore [p] gives rise to a unique element in E%“(M, N). 
Now let @ E Ef;;“(M, N). It is represented by an element (p f (PM, Cq+“N), some 

q E H. Since @ = cp+l Hom(CqM, Cq+“N) for some cp E Hom(DM, C’J+“N), it gives rise 

to an almost cochain map. Therefore it suffices to show, that for rp factoring through 
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an injective, it is cochain homotopy equivalent to the zero-map. This chain homotopy 

map can be constructed in a standard way. 0 

We shall now proceed to construct the long exact sequence of cohomological 

functors. 

Proposition 4.5. Let D be a coresolution of M. Then, for all integers n > 0, 

H”(Hom(D, J)) E’ H”(Hom(M, J)) = Ext”(M,N). 

Proof. Let Y be any complex. We denote by Y[ -11 the complex where Y[- l],, = Y,+l. 

Let D’ be the complex 

. . . -+O+.M+D”+D1 -+ . . . 

This gives rise to a short exact sequence of complexes 

DwD’++M[-11. 

Since J is an injective complex the sequence 

Hom(M[-11, J) H Hom(D’, J) .+ Hom(D, J) 

is still exact. Hence, as H”-‘(Hom(M[-11, J)) = H”(Hom(M, J)), it suffices to prove 

that Hom(D’, J) is acyclic. 

We now denote by J’ the truncated complex . ’ . + 0 + Jo + . . . -+ J’ + 0. Therefore 

J = lim J’ 

is the inverse limit of the complexes J’. Now, for all n 2 0 

H”(Hom(D’,J*))=H” (Horn (ol,l@Ji)) 

= H” 
L 

lim(Hom(D’, J’)) H lim H”(Hom(D’, J’)) . 
t 

Thus it is sufficient to show that Hom(D’, J’) is acyclic. It is the total complex of 

a third quadrant bicomplex X, X_,_, = Hom(ZJ’,.P) with exact columns. The spectral 

sequence 

ZVZq(J3 * ffp+q(TWX)) 

now gives us that Tot(X) is acyclic as required. 0 

Corollary 4.6. For every integer n 2 0 there is a long exact sequence of cohomological 
functors 

where X” is the nth cohomology group of the total complex HOnQ,(M,N). 
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5. Comparison of I-complete and P-complete cohomology 

The aim of this section is to obtain necessary and sufficient conditions for the 

two cohomological functors E&-, -) and I%&-, -) to be naturally equivalent. 

Even though they are both functors in both variables we only have universal proper- 

ties for them as functors of one variable. Recall, [ 14, (2.2)], that 6$&U, -) is the 

P-completion of Exti(A4, -) as a functor of the second variable, and Theorem 2.5, 

that I%&( -,N) is the I-completion of Ext$ -,N) as a functor of the first variable. 

As a first step, we will create functors E%i(-, -) and E%,“(-, -). These are the 

I-completion of the P-completion and the P-completion of the I-completion respec- 

tively. Both Rmctors are now P-complete as well as I-complete and satisfy both uni- 

versal properties [14, (2.1)] and Definition 2.4. The following proposition is the crucial 

step for finding sufficient conditions for E7;tR*(-, -) and I%:(-, -) to be naturally 

equivalent. 

Proposition 5.1. Let R be a ring. Then for all R-modules A4 and N the functors 

are naturally equivalent. 

Proof. Denote, for all integers II LO, by 

Sfi,‘Exti(M,N) =ker(Ext~(CM,N)--+Ext~(lM,N)) 

the left satellite of Exti( -, N) regarded as a functor of the first variable, and by 

S(;iExti(M, N) = ker(Exti(M, QN) -+Exti(M,FN)) 

the left satellite of Ext&W, -) regarded as a functor of the second variable. From 

the definitions of P-complete and I-complete cohomology we obtain for all n E Z the 

following sequences of maps: 

Ext”(M, N) 3 $;Ext”+‘(M, N) -% S$Ext”+*(A4,N) % . . . 

and 

Ext”(M, N) dl SCT;Extn+‘(M, N) 5 SCi;Ext”+2(M, N) a . . . 

Let us now consider the following diagram. For negative n we have to start after 

a finite number of steps, which will not alter the direct limit. 
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Diagram 1: 

Ext”(M,N) 5 S,;;Ext”+‘(M,N) bl S;;;Ext”+2(M,N) + 

I 62 I 62 I 62 

S(;;Ext”+‘(M, N) 5 S&;;Ext”+3(M, N) -% S&;Ext”+4(M, N) + 

The connecting maps involving mixed satellites are obtained inductively using the 

following crucial natural isomorphism, see e.g. [4, (111.7.1)]: 

S&S,&;Ext”(M,N)) = S&&;Ext”(M,N)), 

for all integers i,j, k, n > 0 and 1 E { 1,2}. 

Claim. Each of the squares 

62 

I 

62 

I 

S;;;S$+)Ext n+i+j+i(M,N) 61 S-(‘+1)~~;lj+liExt”+‘tir2(M,N) , 
(1) 

in Diagram 1 is anticommutative. 

Proof. From the way we have obtained the connecting maps 61 and 62 it follows that 

for all i, j 2 0 and n E Z: 

Zm 6 C SPiS-jExt”+‘+j+’ (CM, N) 1 - (1) (2) 

and 

Zm 62 s S$‘(i{Ext n+i+i+i(M, QN)_ 
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Thus, to show anticommutativity of the above square it suffices to consider 

following square: 

the 

It is well known that for i =j = 0 the square is anticommutative, see e.g. [14, 

(11.24)]. Now suppose j = 0 and i = 1. Here we shall consider the following cube: 

S,; Ext”+i(M,N) ) S,; Ext”+2(ZA4,N) 

I1 

&;Extn+‘(M, QN) 7 

1 

>xtz+3(ZM 62N) (1) f 

I Ext”+‘(ZM< , > Ext”+2(Z2M, N) 

\ 1 

Ext”+2(ZM,52N) 1 Ext”+3(C2M,SZN). 

The side squares all commute. The bottom square is anticommutative by the above. 

Thus, since all the vertical maps are injective, the top square is anticommutative as 

required. The case j = 1 and i = 1 is proved similarly, and the claim follows by induc- 

tion. 

We proceed now to prove the proposition. Consider now the maps D1 = 6161 and 

02 = 8282 and the modified Diagram 1 made up from the following squares: 

S&;Ext”+i+i(M,Ar) L SG;-‘S(;;Ext n+i+j+*(n/i, N) 

s,;;Sc-(-*Ext”+‘+;+* S$-*SC;;-*Ext n+i+j+d(M, ~1 

This now is a commutative square. 
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Since taking out every other term in the direct system does not change the direct 

limit, we can now conclude, that there are natural isomorphisms for all n E H: 

E%“(M, N) = lim S,T,’ lim SpiExt”+‘+j(M, N) 

1G 
_ (2) 

i%l 

thus proving Proposition 5.1. 0 

We now have all the ingredients to prove our Comparison Theorem. As already 

mentioned in the introduction the link between I-complete and P-complete cohomology 

is strongly related to facts about silp R and spli R. 

Theorem 5.2. Let R be a ring. Then, for all R-modules M and N, the P-complete 
cohomology E%tlf(M,N) and the I-complete cohomology E%,*(M,N) are naturally 
equivalent if and only if both silp R and spli R are jinite. 

Proof. Let us first assume that silp R = spli R = m. Let P be any projective R- 
module. silp R = m implies, that inj.dimRP 2 m. Hence, by 3.7, E>,*(M, P) = 0. Thus, 

E%;(M, -) is a P-complete functor. By the universal property of the P- 

completion [ 14, (2.1)] the identity transformation E%,*(M, N) + E%,*(M,N) fac- 

tors uniquely through E%,&V,N). Hence, 

E;;i,*(M, N) ” E%‘(M, N) 

is its own P-completion. 

Similarly, spli R = m implies that 

@(M,N) g l&M,N) 

is its own I-completion. Application of Proposition 5.1 now gives us the desired natural 

equivalence. 

We now prove the converse. Suppose Ezi(M,N) 2 E%i(M,N) for all R-modules 

M and N and all n E Z. This implies that Exti(M,M) g Eytj(M,M) for all R-modules 

M. Hence, by [lo, (4.2)] and Theorem 3.7 we have the following equivalence: 

pdRM<cw@(A4,M)=0 

*Ez&V,M)=O 

% inj.dimR M < co, 

which implies that silp R = spli R < 03. 0 
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6. Examples 

In this section we shall give examples for both cases, where the two cohomologies 

agree and where they do not agree. A large group of examples can be obtained by 

applying the following result of Comick and Kropholler. 

Theorem 6.1 (Comick and Kropholler [5, (Theorem C)]). Let k be a commutative 
ring of finite global dimension and let G be an Hg-group. Then silp(kG) = spli(kG) = 

Ic(kG) =jin.dim(kG). 

Here, jin.dim(R) denotes the finitistic dimension, which is the supremum of the 

projective lengths of modules of finite projective dimension. Let k be a commutative 

ring and G be a group. Let X denote the class of kG-modules M such that pdwM < 00 
for all finite subgroups F of G. We denote rc(kG) to be the supremum of the projective 

dimensions of modules in X. 

The next result of [5] now gives us examples, where the two theories agree. 

Example 6.2 (Cornick and Kropholler [5, (Corollary C)]). Let k be a commutative 

ring of finite, global dimension and let G be an H&group of type FP,. Then all the 

above invariants are finite. 

We come now to our first example of rings where the two theories differ. It is again 

an application of [5, (Theorem C)]. 

Example 6.3. Let k be a commutative ring of finite global dimension and let G 

be a torsion-free H&group of infinite cohomological dimension. Then silp(kG) = 
spli(kG)= 03. 

Proof. In this example we show that rc(kG) = co. Since G is torsion-free the only 

finite subgroup is the trivial group. Finite global dimension of k implies that every 

kG-module has finite projective dimension over k bounded by the global dimension of 

k. In particular, k E x. Since cdkG = pdkck = 00, it follows that rc(kG) = 00. 0 

Lemma 6.4. Let R be any ring. Then Jin.dim R < silp R. 

This Lemma follows directly from the proof of [5, (Theorem. C)]. Thus, finding a 

ring of infinite finitistic dimension gives us another counterexample. One example for 

this case are torsion-free abelian groups of infinite rank. Here jn.dim(ZG) = 00. This 

example also falls under the previous case. 

There now follows an example of a group of type FP, [3], which does not belong 

to Hg [lo]. 

Example 6.5. For the Thompson group G = (x1, a-2,. . . 1 c =x,+1, Vi < n) siZp(ZG) = 0~). 
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Brown and Geoghegan prove in [3, (1.8)], that G contains a free abelian group of 

infinite rank. Hence, by the above, silp HG = co. 
Our last class of examples is connected to complete projective resolutions of an 

R-module A4, the way Cornick and Kropholler defined them [7, (l.l)]. They are 

acyclic complexes of projective R-modules P = (P*, 6) indexed by the integers such 

that P coincides with a projective resolution of M in sufficiently high dimensions and 

HomR(P, Q) is acyclic for every projective R-module Q. If a module A4 has a complete 

projective resolution then &&MN) ” H*(HomR(P,N) [7, (1.2)]. 

Theorem 6.6 (Comick and Kropholler [7, (3.10)]). For a ring R the following are 
equivalent: 

(1) silpR=spZiR<oo. 
(2) Every R-module has a complete projective resolution. 

It follows from [6, (5.2)] that non-zero R-modules M where Ex$(M,P)=O for all 

projectives P and all intergers n 2 0, do not have a complete projective resolution. 

There now follows an example of a group ring kG, where the trivial module does not 

satisfy the hypothesis of Theorem 6.6. Hence it gives rise to non-equal I-complete and 

P-complete cohomology. 

Example 6.7 (Mislin [13, (3.2)]). Suppose G=GL,(K), where K is a subfield of the 

algebraic closure of Q. Then for all projective ZG-modules P, H*( G, P) = 0. 

7. Complete injective resolutions 

The last examples in the previous section naturally lead to the notion of complete 

injective resolutions. We shall give a brief introduction without going into great detail 

since all the proofs are just dual to those of Comick and Kropholler [7]. 

Definition 7.1. Let R be a ring and M be an R-module. Then a complete injective 

resolution of A4 is an acyclic complex of injective R-modules I = (I’, S), indexed by 

the integers, such that 

(1) I coincides with an injective resolution of A4 in sufficiently high dimensions. 

(2) HomR(J,I) is acyclic for all injective modules J. 

Lemma 7.2. Any two complete injective resolutions are chain homotopy equivalent. 
If N H J is an injective resolution of N and I is a complete injective resolution of 
N which coincides with J in sufticiently high dimensions, then there is a chain-map 
4: J+I, where r$i=O ifi<O. 

The proof is an induction analogous to [7, (2.4)] relying on the fact that for all 

integers i, j the sequence 

HOrQ(J’,I’-‘) + HomR(J’,z’) + HomR(J’,~‘+‘) 

is exact. 0 
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Theorem 7.3. Let I= (I*,S) be a complete injective resolution of N and M be an 
arbitrary R-module. Then 

El;fpM, N) ?’ H*(HomR(M, I)). 

Proof. Suppose J = (J*, d) is an injective resolution of N and I = (I*, S) agrees with 

J above dimension n, say. Then there is a chain map J -+ I inducing a morphism 

Ext*(-,N) --+ H*(Hom(-,I)) 

of contravariant cohomological fnnctors, which is a natural isomorphism above di- 

mension n. Since Hom(J,I) is acyclic for injective J, the mnctor H*(Hom(-,I)) is 

I-complete. An application of Lemma 2.7 now concludes the proof. 0 

Corollary 7.4. Suppose N has a complete injective resolution. Then 
(1) If J is an injective moduLe, then Ext’(J, N) = 0 in su$ficiently high dimensions. 
(2) If P is projective, then Ext,*(P, N) = 0. 

We shall now give an outline of how to construct complete injective resolutions for 

modules over group rings kG. 

Definition 7.5. Let G be a group, k be a commutative ring of coefficients. Then define 

(1) B(G, Z) to be the set of bounded functions from G to iZ and 

(2) B(G, k) = B(G, Z) 8~ k to be the k-algebra of functions from G to k which only 

take finitely many values. 

There is a well defined action of G on B(G, k) defined as follows: cpg(S) = cp(gg-’ ) 

for all S, g E G. For a detailed account of facts about B(G, k) the reader is referred to 

[6]. We will only mention the facts necessary to construct our resolution. 

Lemma 7.6 (Cornick and Kropholler [7, (3.2),(3.3)]). Let G and k be as above. Then 
(i) B( G, k) is free as a k-module, 

(ii) there is a k-split inclusion k H B(G, k) of kG-modules. 

For simplicity we shall denote by B = B(G, k) and by 8 the cokemel of the injection 

k H B. Clearly B is k-free. We also denote, for kG-modules M, by hom(B,M) the 

kG-module of k-homomorphisms from B to M. 

Theorem 7.7. Let kG be a group ring and M be a kG-module. Suppose 
inj.dims(hom(B,M)) < 03. Then M has a complete injective resolution. 

Proof. Replacing M with a suitable cokemel in an injective resolution we may as- 

sume that hom(B,M) is injective. From Lemma 7.6 it follows that hom(&M)w 
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hom(B,M) -++M is exact. Also, hom(B, hom(&M)) is injective. Denote by horni 
= hom(B, hom(B ,. . . hom(8,M . . .)), i times. Hence by induction hom(B,hom’(&M)) 
is injective for all i 2 0. Thus, we can form a backwards injective resolution of M: 

. . . + hom(B, hom’(B,M)) + . . . + hom(B, hom(B,M)) + hom(B,M) *M. 

Splicing this together with an injective resolution 

M+-+ZO+Z’ --f . . . . 

of M yields a complete injective resolution I. 
It remains to check that Horn&J, I) is acyclic for all injective J. Since J ++ J @ B 

splits, it is sufficient to show that HOm&? 123 J,I) is acyclic. Since 

HOmkG(B @ J,I) S Horn&J, hom(B,I)), 

this follows from the fact that I splits under hom(B, -). 0 

Corollary 7.8 (Shapiro’s Lemma). Let H 5 G be a subgroup and N be a kG-module 
having a complete injective resolution. Then, for all kH-modules M, 

E%h(M, N) 2 E>ri,(M @m kG, N). 

The proof follows from the fact that a complete injective resolution of N over kG 
can be regarded as a complete injective resolution of N over kH and an application 

of the Adjoint Isomorphism [14, (2.1 l)]. 

Theorem 7.9. Let R be any ring. Then the following are equivalent: 
(1) silpR=spliR<ca. 
(2) Every R-module has a complete injective resolution, 

Proof. The implication (1) + (2) follows from [8, Section 41. silp R < 00 implies 7.1(l) 

and spli R < 03 then implies condition (2). 

Now suppose every module has a complete injective resolution. In particular every 

projective P has one. Hence, by Corollary 7.4. l%‘(P,P) = 0. Therefore, by Theo- 

rem 3.7, every projective has finite injective dimension, thus implying silpR<co. Also 

by Corollary 7.4, for all injectives J and arbitrary R-modules N there is an integer 

n > 0 such that Ext’(J,N) = 0 for all i > n. It follows from a standard argument that n 
can be chosen independently from the choice of N. Hence spliR<cc as required. 0 
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